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ABSTRACT 

Let  (Si, gi), i = 1, 2 be two compac t  r i e m a n n i a n  surfaces  isometr ical ly  

e m b e d d e d  in eucl idean spaces.  In th i s  pape r  we show t h a t  if M = $1 x $2, 

t h e n  for any  func t ion  F :  M --~ R ,  t he  g raph  of F ,  i.e. t h e  manifo ld  

{(x, F(x)) : x E M},  does  no t  have  posi t ive sect ional  curva ture .  

1. I n t r o d u c t i o n  

Let M be a riemannian manifold and let TpM denote the tangent vector space of 

M at p. The sectional curvature is the function that  assigns the Gauss curvature 

at p of the surface built of geodesics starting at p and velocity vector in a to 

any 2-dimensional space a C TpM. We say that  the riemannian manifold M 

has positive sectional curvature if for every point p E M the sectional curvature 

K(a) of every 2-plane a C TpM is positive. An example of such manifolds are 

the n-dimensional spheres of radius r, S~(r), with the metric induced by R ~+1. 

In this case its sectional curvature is equal to 1/r 2 for any 2-plane a in TpM. In 

general, the question of deciding if a given manifold admits a riemannian metric 

with positive sectional curvature is a difficult one; for example, the conjecture 

stating that  no riemannian metric on S 2 x S 2 has positive sectional curvature is 

known as Hopf's conjecture and remains unsolved. In this paper, we prove that  

a certain type of metric on a product of surfaces cannot have positive sectional 

curvature. 
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2. M a i n  t h e o r e m  

In this section we state and prove the main theorem of this paper. 

THEOREM 2.1: Let Si C R k~, i = 1,2 be two compact riemannian surfaces 

with the metric induced by the euclidean spaces. I f  M = $1 x $2, in particular 

M C R y with N = kl + k2, then for any smooth function F: M ~ R ,  the 

manifold M -- {(x, F(x))  �9 R N+I : x �9 M}  with the metric induced by R N+I 

does not have positive sectional curvature. 

Remark: A generalization of this theorem to functions with values in R k will 

provide a proof of Hopf's conjecture. 

Before proving this theorem, we fix some notation and prove some lemmas 

that  will help us to relate the sectional curvature on M and/17/. Let us denote 

by ~' the connection on M with the metric induced by the embedding r -- 

(x, F(x) )  of M in R N+l, and let us denote by V the connection on M induced 

by R N. We will use the following notation. 

1. If m E M, we denote by rh the point (m, F(m)) .  We denote by M the 

manifold r  C R g+l  with the metric induced by R N+l. 

2. If a map Y: M ~ R N defines a tangent vector field on M, we denote by 

the vector field on ~ /def ined  by ]2(rh) = (Y(m), dFm(Y(m))) .  

3. Given p E M and v E R N, we denote by vT(p) the tangent orthogonal 

projection of v on TpM. Given w E R N+I, we denote by wT(p) the tangent 

orthogonal projection of w on Tp_]lT/. 

Since the manifold 217I is isometric to the manifold M with the metric induced 

by the embedding r -- (p, F(p)) ,  then we also denote by V the connection on 

/17/. We will find the sectional curvature on M in terms of the sectional curvature 

of M and the derivatives of F.  For any m E M C R N, let {vi : i = 1 , . . . ,  n} be 

an orthonormal frame defined in an open neighborhood U C M of m; note that  

each vi: U -~ R N is a tangent vector field. Without  loss of generality we may 

assume that  the vector fields Vv~Vj vanish at m for all i , j .  We denote by V F  the 

gradient vector of F as a function on M; since the frame of the vector field v~'s 
n 

is orthonormal, then for any p �9 V we have that  V F  = ~i=1 dFp(Vi(p))vi(p). 

Recall that  the hessian of F is the symmetric 2-tensor given by Hess(F)(X, Y) = 

(Vx (VF) ,  Y) for any pair of tangent vector fields on M. For any p �9 U, we 

define Fi (p) = dFp (vi (p)) and Fij (p) = (Hess(F))p (vi (p), vj (p)). Before trying 

to find a relation between the sectional curvature of M and/17/, we need to prove 

the following lemmas, 
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LEMMA 2.1: (a) The inverse of the matrix {gij }~,j:l  d e f i n e d  by gij = (~ij -'~ FiFj  
is the matrix I'~iJ In t~ Ji,j=l defined by 

gij = 5~j FiFj 
1 + iVY[ 2" 

(b) I f  v is a vector in R x and r is a real number, then for any m C M we have 

that 

r - <v, VF} r - (v, VF} VF.  
(v,r)  ~ -- (v T, {v, VF) )  + -1-~-]~--F-~ (VF, IVFI 2) = v T + 1 + IVF[ 2 

n Proof of Lemma 2.1: A direct computation shows that ~ j = l  9ij9 jk = 5~k, 

therefore (a) follows. Let us prove (b). For any m C M let us define 

{vi : i = 1, . . .  ,n} as above; then we have that the vectors 

{w~ = ~ ( ~ ) :  i = 1 , . . .  ,~} 

form a base for T , ~ / ,  therefore, there exist numbers Cl , . . . ,  cn such that 

n 

(1) (v, r )T(~)  = E ciwi. 
i=1 

We have {wi,wj)  = ((vi,dFp(vi)), (vj ,dFp(vj)))  = (~ij - t -Fi (m)Fj(m)  = gij. If 

we multiply equation (1) by wj, we obtain (v, vj} + rFj = ~ i~1  cigij. Now if 

we multiply this equation by gjk and sum from j = 1 to j = n, we obtain 

n 

ck = E ( ( v ,  vj) + rFj)9 jk 
j=l  

= {v, vk} + rFa - ~ { 
(v, vj )Fjgk  r Fj Fj Wk I + 

J=~ 1 +  [VFI ~ I + I V F I  2 

(~ ,VF)Fk rIVFI2F~ 
= (v, vk) + rFk 

1 + IVFI 2 1 + IVF[ 2 

r - (v, V F )  
= (v ,v~)+ -f~:Wyyp ~ F~. 

Plugging these values for ck in equation (1) we obtain the first equality in (b). 

For the other equality in (b), it is enough to check that if 

r - (v, VF )  
= v T + ~ - : ; ~  r E ,  

then 

r - (v, VF)  
= (u, dF(u))  = (u, (u, VF) )  = (v T, (v, VF}) + 1 + ]ETF] 2 (VF, IVFI2). 



68 O. PERDOMO Isr. J. Math. 

This proves the lemma. | 

LEMMA 2.2: If V, w: M ~ R N are tangent vector fields on M, then the Levi 

Civita connection of the tangent vector fields ~, ~: 2k/~  R N+I is given by 

Hess F(v, 
Vo~ = Vvw + w) VF. 

1 + ]VFI 2 

Proof of Lemma 2.2: Let a(t) be a smooth curve on M C R N such that 

a(0) -- m and a'(0) -- v and define ~(t) = (a(t), F(a(t))).  Since the riemannian 

metrics on M and .~/are those induced by the euclidean spaces, we have 

d 
= = (-~w(a(t))[t=o, d ( V F ,  w)(a(t)))"  ( % ~ ) ( ~ )  ( ~ ( ~ ( t ) ) )  t--0 d t=0 

= w(a(t))lx=o, (VvVF, w) + (VF, V,w) . 

Using part (b) of Lemma 2.1 and the fact that (dw(a(t))lt=o) T = Vvw, we 

obtain 

(V~@)(rh) = V,w + {VvVF, w} + (VF, V~w} - {VF, V~w} 
1 + ]VF] 2 V F  

= V,w + Hess F(v, w) VF.  
1 + IVF} 2 

This proves the lemma. | 

Since Hess(F) is symmetric, we have as a corollary of Lemma 2.2 that if Iv, w] 

vanishes at m E M, then [~, ~] also vanishes at rh E M. 

Let us denote the covariant derivative of the tensor Hess(F) by D2dF, i.e. for 

any tangent vector fields X, Y and Z we have 

D2dF(X, Y; Z) = Z(Hess(F)(X, Y) ) - Hess(F)(VzX,  Y)  - Hess(F)(Z, V zY) .  

LEMMA 2.3: Let R and [~ denote the curvature tensor of M and l~/l, respectively. 

For any tangent vector fields X, Y, Z: M ~ R N in M we have 

R ( X , Y ) Z  

Hess(R)(X, Z) Hess(F) (Y, Z) V x V F  
= R ( X , Y ) Z +  I + I V F [  2 V y V F -  I + [ V F [  2 

+ D2dF(X, Z; Y) - D2dF(Y, Z; X)  V F  
1 + IVF[ 2 

+ (IVFI 2 - 1) 

Hess(F) (X, Z) Hess(F) (Y, VF)  - Hess(f)  (Y, Z) Hess(F)(X, V F ) Y R .  
(2) x (1 + [VF[2) 2 
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Proof of Lemma 2.3: Given m �9 M, let {vi : i = 1,. . .  ,n} be an orthonormal 

frame defined as above. In order to prove the lemma, it is enough to prove 

equation (2) at the point m in the case X = vi, Y = vj and Z = vk. Using the 

definition of curvature tensor and Lemma 2.2, we have 

~(~, ~)v-~ 

F,k V-F) - ~',~ (V~ vk + Fjk-V--~)  
=9~-j (V,,vk + 1 + [VF[ 2 1 + [VF[ 2 

Fik VF)  + Hess(F)(vj, F,k V F ) V F  =V.r + V.~ (1 + ]VF] 2 1 + IVFI 2 

Fjk VF)  - Hess(F)(vi, Fjk - Vv, VvjVk- Vv,(1 + IVF! 2 I + - ~ F I 2 V F )  VF 

F~k Fjk Vv, VF 
=R(v,,vj)vk + 1 + IVF[ 2 V ' j V F  1 + IVF[ 2 

+ { Fik Hess(F)(vj, VF) - Fjk Hess(F)(vi, VF) } VF  
1 + IvFI 2 

F,k I VF 
+ { v J ( I + I V F I 2 j - v i ( I + I V F [ 2 j j  �9 

Using that V.~vi(m) vanish for any i , j  �9 {1,. . . ,  n}, we can prove that 

vl(Frs) = D2dF(v~, Vs; vz) 

and 

vz((1 + [VFI2) -1) = -2(1 + [VF[2)-2Hess(F)(vt, VF) 

These equalities together with the expression for/~(~7i, ~)v-k that we obtained 

above give us the proof of the lemma. 

Proof of Theorem 2.1: By Morse theory [B], there exists a closed geodesic 

71 C $1 and a closed geodesic 72 C $2. Let us define 

T = { ( x , y ) � 9 1 4 9  a n d y � 9  

Let h: T ~ R be the function defined by h(m) = F(m) for all m C T. For 

every z E Si, let r "h ~ Rk~ be unit tangent vector fields, i = 1,2. Let 

r T--* R N be the tangent vector field defined by r (x, y) = (r 0 , . . . ,  0) 

and r = (0,...,0,~b2(y)). We will first prove the theorem in the case 

that h is a Morse function on T. Let (xo, Yo) E T be a critical point of h which 

is a saddle point, i.e. the determinant of Hess(h) at (xo, Yo) is negative; this 
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saddle point exists because T is topologically a torus. For any (x, y) C T we can 

write VF(x ,  y) = Vh + (VF)  • where (VF)  • is perpendicular to any vector in 

T(x,y)T. It is not difficult to show that T is a totally geodesic submanifold of 

M [D], therefore we have 

Hess(F)(r  Cj) -- (Vr VF, Cj) 

= (Vr CD + (Vr • CD 

= (Dr Cj) - ( (VF)  • Vr162 

= Sess(h)(r Cj). 

In the last equality above we have used the fact that since T is totally geodesic, 

then Vr162 (x, y) E T(x,~)T for every (x, y) C T; the D in the expression above 

denotes the Levi Civita connection on T. 

Recall that {X, Y) = (X, Y) + dF(X)dF(Y) .  We will prove the theorem by 

showing that (R(r r162 r at (x0, Y0, F(xo,Yo) is negative. Since (xo,y0) 

is a critical point in M, then dh(xo,yo)(r = dF(xo,yo)(r = (VF,r 
vanishes. Using Lemma 2.3 and the fact that the sectional curvature of the 

plane spanned by {r r is zero because M has the product metric [D], we 

obtain at the point (Xo, Y0) that 

Hess(F)(r  r 
<R(~I, ~2)(fil, (~2> : (R( r162162  r "~ 1 "~ IVFI 2 (Vr r 

Hess(F) (r r 
- 1 + IVFI 2 (Vr r 

_ Hess(h)(r r Hess(h)(r r 
1 + IVF[ 2 

Hess(h) (r Cx) Hess(h)(r r 
1 + [VF] 2 

<0. 

This inequality completes the proof in the case that the function h: T ~ R is a 

Morse function. 

For the general case we will proceed by contraction. Let us assume that M 

has positive sectional curvature. Since M is compact, then there exists e > 0 

such that for any a in TpM, we have K(a) > e. Let T be defined as above. 

Since M is compact, we can use the formula in Lemma 2.3 for the curvature 

tensor in order to find a positive 5 such that if f': M ~ R is chosen such 

that the difference between _F and its derivatives up to third order with F and 

its derivatives up to third order respectively is less than 5, then the difference 
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between the sectional curvature of the graph of F and the graph of _P is less 

than e. By Morse Theory [M] we can choose th is /~  such that  the function _F 

restricted to T is a Morse function. Using the case we already considered, we 

have that  the graph of /~  has a plane with negative sectional curvature. This 

contradicts the fact that  the difference between the sectional curvature of the 

graph of F and the graph of /~ is less than e. 1 
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