METRICS ON PRODUCTS OF SURFACES WITH NON-POSITIVE SECTIONAL CURVATURE

BY

OSCAR PERDOMO

Departamento de Matematicas, Facultad de Ciencias Universidad del VaUe, A. A. 25 360 Call, Colombia e-mail: osperdom@mafalda.univalle.edu.eo

ABSTRACT

Let (S_i, g_i) , $i = 1, 2$ be two compact riemannian surfaces isometrically embedded in euclidean spaces. In this paper we show that if $M = S_1 \times S_2$, then for any function $F: M \rightarrow \mathbf{R}$, the graph of F , i.e. the manifold $\{(x, F(x)) : x \in M\}$, does not have positive sectional curvature.

1. Introduction

Let M be a riemannian manifold and let T_pM denote the tangent vector space of M at p. The sectional curvature is the function that assigns the Gauss curvature at p of the surface built of geodesics starting at p and velocity vector in σ to any 2-dimensional space $\sigma \subset T_pM$. We say that the riemannian manifold M has positive sectional curvature if for every point $p \in M$ the sectional curvature $K(\sigma)$ of every 2-plane $\sigma \subset T_nM$ is positive. An example of such manifolds are the *n*-dimensional spheres of radius r, $Sⁿ(r)$, with the metric induced by \mathbb{R}^{n+1} . In this case its sectional curvature is equal to $1/r^2$ for any 2-plane σ in T_pM . In general, the question of deciding if a given manifold admits a riemannian metric with positive sectional curvature is a difficult one; for example, the conjecture stating that no riemannian metric on $S^2 \times S^2$ has positive sectional curvature is known as Hopf's conjecture and remains unsolved. In this paper, we prove that a certain type of metric on a product of surfaces cannot have positive sectional curvature.

Received February 11, 2005

2. Main theorem

In this section we state and prove the main theorem of this paper.

THEOREM 2.1: Let $S_i \subset \mathbb{R}^{k_i}$, $i = 1,2$ be two compact riemannian surfaces with the metric induced by the euclidean spaces. If $M = S_1 \times S_2$, in particular $M \subset \mathbb{R}^N$ with $N = k_1 + k_2$, then for any smooth function $F: M \to \mathbb{R}$, the *manifold* $\overline{M} = \{(x, F(x)) \in \mathbb{R}^{N+1} : x \in M\}$ with the metric induced by \mathbb{R}^{N+1} *does not have positive sectional curvature.*

Remark: A generalization of this theorem to functions with values in \mathbb{R}^k will provide a proof of Hopf's conjecture.

Before proving this theorem, we fix some notation and prove some lemmas that will help us to relate the sectional curvature on M and \overline{M} . Let us denote by $\bar{\nabla}$ the connection on M with the metric induced by the embedding $\phi(x)$ = $(x, F(x))$ of M in \mathbb{R}^{N+1} , and let us denote by ∇ the connection on M induced by \mathbf{R}^N . We will use the following notation.

1. If $m \in M$, we denote by \bar{m} the point $(m, F(m))$. We denote by \bar{M} the manifold $\phi(M) \subset \mathbf{R}^{N+1}$ with the metric induced by \mathbf{R}^{N+1} .

2. If a map $Y: M \to \mathbf{R}^N$ defines a tangent vector field on M, we denote by \overline{Y} the vector field on \overline{M} defined by $\overline{Y}(\overline{m}) = (Y(m), dF_m(Y(m))).$

3. Given $p \in M$ and $v \in \mathbb{R}^N$, we denote by $v^T(p)$ the tangent orthogonal projection of v on T_pM . Given $w \in \mathbb{R}^{N+1}$, we denote by $w^{\overline{T}}(\overline{p})$ the tangent orthogonal projection of w on $T_{\bar{p}}\bar{M}$.

Since the manifold \bar{M} is isometric to the manifold M with the metric induced by the embedding $\phi(p) = (p, F(p))$, then we also denote by $\overline{\nabla}$ the connection on \tilde{M} . We will find the sectional curvature on \bar{M} in terms of the sectional curvature of M and the derivatives of F. For any $m \in M \subset \mathbb{R}^N$, let $\{v_i : i = 1, \ldots, n\}$ be an orthonormal frame defined in an open neighborhood $U \subset M$ of m; note that each $v_i: U \to \mathbf{R}^N$ is a tangent vector field. Without loss of generality we may assume that the vector fields $\nabla_{v_i} v_j$ vanish at m for all *i, j.* We denote by ∇F the gradient vector of F as a function on M; since the frame of the vector field v_i 's is orthonormal, then for any $p \in U$ we have that $\nabla F = \sum_{i=1}^n dF_p(v_i(p))v_i(p)$. Recall that the hessian of F is the symmetric 2-tensor given by $Hess(F)(X, Y) =$ $\langle \nabla_X(\nabla F), Y \rangle$ for any pair of tangent vector fields on M. For any $p \in U$, we define $F_i(p) = dF_p(v_i(p))$ and $F_{ij}(p) = (\text{Hess}(F))_p(v_i(p), v_j(p))$. Before trying to find a relation between the sectional curvature of M and \overline{M} , we need to prove the following lemmas,

LEMMA 2.1: (a) The inverse of the matrix ${g_{ij}}^n_{i,j=1}$ defined by $g_{ij} = \delta_{ij} + F_i F_j$ *is the matrix* $\{g^{ij}\}_{i,j=1}^n$ *defined by*

$$
g^{ij} = \delta_{ij} - \frac{F_i F_j}{1 + |\nabla F|^2}.
$$

(b) If v is a vector in \mathbb{R}^N and r is a real number, then for any $m \in M$ we have *that*

$$
(v,r)^{\overline{T}} = (v^T, \langle v, \nabla F \rangle) + \frac{r - \langle v, \nabla F \rangle}{1 + |\nabla F|^2} (\nabla F, |\nabla F|^2) = v^T + \frac{r - \langle v, \nabla F \rangle}{1 + |\nabla F|^2} \nabla F.
$$

Proof of Lemma 2.1: A direct computation shows that $\sum_{j=1}^{n} g_{ij}g^{jk} = \delta_{ik}$, therefore (a) follows. Let us prove (b). For any $m \in M$ let us define $\{v_i : i = 1, \ldots, n\}$ as above; then we have that the vectors

$$
\{w_i=\bar{v}_i(\bar{m}):i=1,\ldots,n\}
$$

form a base for $T_{\bar{m}}\bar{M}$, therefore, there exist numbers c_1,\ldots, c_n such that

(1)
$$
(v,r)^{\bar{T}}(\bar{m}) = \sum_{i=1}^{n} c_i w_i.
$$

n

We have $\langle w_i, w_j \rangle = \langle (v_i, dF_p(v_i)), (v_j, dF_p(v_j)) \rangle = \delta_{ij} + F_i(m)F_j(m) = g_{ij}$. If we multiply equation (1) by w_j , we obtain $\langle v, v_j \rangle + rF_j = \sum_{i=1}^n c_i g_{ij}$. Now if we multiply this equation by g^{jk} and sum from $j = 1$ to $j = n$, we obtain

$$
c_k = \sum_{j=1}^{n} (\langle v, v_j \rangle + rF_j)g^{jk}
$$

= $\langle v, v_k \rangle + rF_k - \sum_{j=1}^{n} \left\{ \frac{\langle v, v_j \rangle F_j F_k}{1 + |\nabla F|^2} + \frac{rF_j F_j F_k}{1 + |\nabla F|^2} \right\}$
= $\langle v, v_k \rangle + rF_k - \frac{\langle v, \nabla F \rangle F_k}{1 + |\nabla F|^2} - \frac{r|\nabla F|^2 F_k}{1 + |\nabla F|^2}$
= $\langle v, v_k \rangle + \frac{r - \langle v, \nabla F \rangle}{1 + |\nabla F|^2} F_k.$

Plugging these values for c_k in equation (1) we obtain the first equality in (b).

For the other equality in (b), it is enough to check that if

$$
u = v^T + \frac{r - \langle v, \nabla F \rangle}{1 + |\nabla F|^2} \nabla F,
$$

then

$$
\overline{u}=(u,dF(u))=(u,\langle u,\nabla F\rangle)=(v^T,\langle v,\nabla F\rangle)+\frac{r-\langle v,\nabla F\rangle}{1+|\nabla F|^2}(\nabla F,|\nabla F|^2).
$$

This proves the lemma. \blacksquare

LEMMA 2.2: If $v, w: M \to \mathbb{R}^N$ are tangent vector fields on M, then the Levi *Civita connection of the tangent vector fields* $\bar{v}, \bar{w}: \bar{M} \to \mathbf{R}^{N+1}$ *is given by*

$$
\bar{\nabla}_{\bar{v}}\bar{w} = \overline{\nabla_{v}w + \frac{\text{Hess }F(v, w)}{1 + |\nabla F|^2}\nabla F}.
$$

Proof of Lemma 2.2: Let $\alpha(t)$ be a smooth curve on $M \subset \mathbb{R}^N$ such that $\alpha(0) = m$ and $\alpha'(0) = v$ and define $\beta(t) = (\alpha(t), F(\alpha(t)))$. Since the riemannian metrics on M and \overline{M} are those induced by the euclidean spaces, we have

$$
(\bar{\nabla}_{\bar{v}}\bar{w})(\bar{m}) = \left(\frac{d}{dt}\bar{w}(\beta(t))\right)^{\bar{T}}\Big|_{t=0} = \left(\frac{d}{dt}w(\alpha(t))|_{t=0}, \frac{d}{dt}\langle \nabla F, w \rangle(\alpha(t))\right)^{\bar{T}}\Big|_{t=0}
$$

$$
= \left(\frac{d}{dt}w(\alpha(t))|_{t=0}, \langle \nabla_v\nabla F, w \rangle + \langle \nabla F, \nabla_v w \rangle\right)^{\bar{T}}.
$$

Using part (b) of Lemma 2.1 and the fact that $\left(\frac{d}{dt}w(\alpha(t))|_{t=0}\right)^T = \nabla_v w$, we obtain

$$
(\bar{\nabla}_{\bar{v}}\bar{w})(\bar{m}) = \overline{\nabla_{v}w + \frac{\langle \nabla_{v}\nabla F, w \rangle + \langle \nabla F, \nabla_{v}w \rangle - \langle \nabla F, \nabla_{v}w \rangle}{1 + |\nabla F|^{2}}}\nabla F
$$

$$
= \overline{\nabla_{v}w + \frac{\text{Hess } F(v, w)}{1 + |\nabla F|^{2}}\nabla F}.
$$

This proves the lemma. \blacksquare

Since Hess(F) is symmetric, we have as a corollary of Lemma 2.2 that if $[v, w]$ vanishes at $m \in M$, then $[\bar{v}, \bar{w}]$ also vanishes at $\bar{m} \in M$.

Let us denote the covariant derivative of the tensor $Hess(F)$ by $D^2 dF$, i.e. for any tangent vector fields X, Y and Z we have

$$
D^{2}dF(X,Y;Z) = Z(\text{Hess}(F)(X,Y)) - \text{Hess}(F)(\nabla_{Z}X,Y) - \text{Hess}(F)(X,\nabla_{Z}Y).
$$

LEMMA 2.3: Let R and \bar{R} denote the curvature tensor of M and \bar{M} , respectively. *For any tangent vector fields X, Y, Z: M* \rightarrow *R^N in M we have*

$$
R(X,Y)Z
$$

= $\overline{R(X,Y)Z}$ + $\frac{\text{Hess}(F)(X,Z)}{1+|\nabla F|^2} \overline{\nabla_Y \nabla F}$ - $\frac{\text{Hess}(F)(Y,Z)}{1+|\nabla F|^2} \overline{\nabla_X \nabla F}$
+ $\frac{D^2 dF(X,Z;Y) - D^2 dF(Y,Z;X)}{1+|\nabla F|^2} \overline{\nabla F}$
+ $(|\nabla F|^2 - 1)$
(2) x $\frac{\text{Hess}(F)(X,Z) \text{Hess}(F)(Y,\nabla F) - \text{Hess}(F)(Y,Z) \text{Hess}(F)(X,\nabla F)}{(1+|\nabla F|^2)^2} \overline{\nabla F}$.

Proof of Lemma 2.3: Given $m \in M$, let $\{v_i : i = 1, \ldots, n\}$ be an orthonormal frame defined as above. In order to prove the lemma, it is enough to prove equation (2) at the point m in the case $X = v_i$, $Y = v_j$ and $Z = v_k$. Using the definition of curvature tensor and Lemma 2.2, we have

$$
\bar{R}(\bar{v}_i, \bar{v}_j)\bar{v}_k
$$
\n
$$
= \bar{\nabla}_{\bar{v}_j} \bar{\nabla}_{\bar{v}_i} \bar{v}_k - \bar{\nabla}_{\bar{v}_i} \bar{\nabla}_{\bar{v}_j} \bar{v}_k
$$
\n
$$
= \bar{\nabla}_{\bar{v}_j} \left(\nabla_{v_i} v_k + \frac{F_{ik}}{1 + |\nabla F|^2} \nabla F \right) - \bar{\nabla}_{\bar{v}_i} \left(\nabla_{v_j} v_k + \frac{F_{jk}}{1 + |\nabla F|^2} \nabla F \right)
$$
\n
$$
= \overline{\nabla}_{v_j} \nabla_{v_i} v_k + \nabla_{v_j} \left(\frac{F_{ik}}{1 + |\nabla F|^2} \nabla F \right) + \text{Hess}(F) \left(v_j, \frac{F_{ik}}{1 + |\nabla F|^2} \nabla F \right) \overline{\nabla F}
$$
\n
$$
- \overline{\nabla}_{v_i} \nabla_{v_j} v_k - \nabla_{v_i} \left(\frac{F_{jk}}{1 + |\nabla F|^2} \nabla F \right) - \text{Hess}(F) \left(v_i, \frac{F_{jk}}{1 + |\nabla F|^2} \nabla F \right) \overline{\nabla F}
$$
\n
$$
= \overline{R(v_i, v_j)v_k} + \frac{F_{ik}}{1 + |\nabla F|^2} \overline{\nabla}_{v_j} \nabla F - \frac{F_{jk}}{1 + |\nabla F|^2} \overline{\nabla}_{v_i} \nabla F
$$
\n
$$
+ \left\{ \frac{F_{ik} \text{ Hess}(F)(v_j, \nabla F) - F_{jk} \text{ Hess}(F)(v_i, \nabla F)}{1 + |\nabla F|^2} \right\} \overline{\nabla F}
$$
\n
$$
+ \left\{ v_j \left(\frac{F_{ik}}{1 + |\nabla F|^2} \right) - v_i \left(\frac{F_{jk}}{1 + |\nabla F|^2} \right) \right\} \overline{\nabla F}.
$$

Using that $\nabla_{v_j} v_i(m)$ vanish for any $i, j \in \{1, ..., n\}$, we can prove that

$$
v_l(F_{rs}) = D^2 dF(v_r, v_s; v_l)
$$

and

$$
v_l((1+|\nabla F|^2)^{-1}) = -2(1+|\nabla F|^2)^{-2}
$$
 Hess $(F)(v_l, \nabla F)$

These equalities together with the expression for $\bar{R}(\bar{v}_i, \bar{v}_j)\bar{v}_k$ that we obtained above give us the proof of the lemma.

Proof of Theorem 2.1: By Morse theory [B], there exists a closed geodesic $\gamma_1 \subset S_1$ and a closed geodesic $\gamma_2 \subset S_2$. Let us define

$$
T = \{(x, y) \in M : x \in \gamma_1 \text{ and } y \in \gamma_2\}.
$$

Let h: $T \to \mathbf{R}$ be the function defined by $h(m) = F(m)$ for all $m \in T$. For every $z \in S_i$, let $\psi_i : \gamma_i \to \mathbf{R}^{k_i}$ be unit tangent vector fields, $i = 1, 2$. Let $\phi_i: T \to \mathbf{R}^N$ be the tangent vector field defined by $\phi_1(x, y) = (\psi_1(x), 0, \ldots, 0)$ and $\phi_2(x,y) = (0,\ldots,0,\psi_2(y))$. We will first prove the theorem in the case that h is a Morse function on T. Let $(x_0, y_0) \in T$ be a critical point of h which is a saddle point, i.e. the determinant of Hess (h) at (x_0, y_0) is negative; this 70 O. PERDOMO Isr. J. Math.

saddle point exists because T is topologically a torus. For any $(x, y) \in T$ we can write $\nabla F(x, y) = \nabla h + (\nabla F)^{\perp}$, where $(\nabla F)^{\perp}$ is perpendicular to any vector in $T(x,y)$. It is not difficult to show that T is a totally geodesic submanifold of M [D], therefore we have

$$
\begin{aligned} \text{Hess}(F)(\phi_i, \phi_j) &= \langle \nabla_{\phi_i} \nabla F, \phi_j \rangle \\ &= \langle \nabla_{\phi_i} \nabla h, \phi_j \rangle + \langle \nabla_{\phi_i} (\nabla F)^\perp, \phi_j \rangle \\ &= \langle D_{\phi_i} \nabla h, \phi_j \rangle - \langle (\nabla F)^\perp, \nabla_{\phi_i} \phi_j \rangle \\ &= \text{Hess}(h)(\phi_i, \phi_j). \end{aligned}
$$

In the last equality above we have used the fact that since T is totally geodesic, then $\nabla_{\phi_i} \phi_j(x, y) \in T_{(x, y)}T$ for every $(x, y) \in T$; the D in the expression above denotes the Levi Civita connection on T.

Recall that $\langle \overline{X}, \overline{Y} \rangle = \langle X, Y \rangle + dF(X)dF(Y)$. We will prove the theorem by showing that $\langle \bar{R}(\bar{\phi}_1, \bar{\phi}_2) \bar{\phi}_1, \bar{\phi}_2 \rangle$ at $(x_0, y_0, F(x_0, y_0)$ is negative. Since (x_0, y_0) is a critical point in M, then $dh_{(x_0,y_0)}(\phi_i) = dF_{(x_0,y_0)}(\phi_i) = \langle \nabla F, \phi_j \rangle (x_0,y_0)$ vanishes. Using Lemma 2.3 and the fact that the sectional curvature of the plane spanned by $\{\phi_1, \phi_2\}$ is zero because M has the product metric [D], we obtain at the point (x_0, y_0) that

$$
\langle \bar{R}(\bar{\phi}_1, \bar{\phi}_2) \bar{\phi}_1, \bar{\phi}_2 \rangle = \langle R(\phi_1, \phi_2) \phi_1, \phi_2 \rangle + \frac{\text{Hess}(F)(\phi_1, \phi_1)}{1 + |\nabla F|^2} \langle \nabla_{\phi_2} \nabla F, \phi_2 \rangle \n- \frac{\text{Hess}(F)(\phi_2, \phi_1)}{1 + |\nabla F|^2} \langle \nabla_{\phi_1} \nabla F, \phi_2 \rangle \n= \frac{\text{Hess}(h)(\phi_1, \phi_1) \text{Hess}(h)(\phi_2, \phi_2)}{1 + |\nabla F|^2} \n- \frac{\text{Hess}(h)(\phi_2, \phi_1) \text{Hess}(h)(\phi_1, \phi_2)}{1 + |\nabla F|^2} < 0.
$$

This inequality completes the proof in the case that the function $h: T \to \mathbf{R}$ is a Morse function.

For the general case we will proceed by contraction. Let us assume that M has positive sectional curvature. Since M is compact, then there exists $\epsilon > 0$ such that for any σ in T_pM , we have $K(\sigma) > \epsilon$. Let T be defined as above. Since M is compact, we can use the formula in Lemma 2.3 for the curvature tensor in order to find a positive δ such that if $\bar{F}: M \to \mathbf{R}$ is chosen such that the difference between \bar{F} and its derivatives up to third order with F and its derivatives up to third order respectively is less than δ , then the difference between the sectional curvature of the graph of F and the graph of \overline{F} is less than ϵ . By Morse Theory [M] we can choose this \bar{F} such that the function \bar{F} restricted to T is a Morse function. Using the case we already considered, we have that the graph of \bar{F} has a plane with negative sectional curvature. This contradicts the fact that the difference between the sectional curvature of the graph of F and the graph of \overline{F} is less than ϵ .

ACKNOWLEDGEMENT: I thank Colciencias for its financial support while working on this paper.

References

- **[B]** R. Bott, Lectures on Morse Theory, old and new, Bulletin of the American Mathematical Society 7 (1982), 331-358.
- $[D]$ M. Do Carmo, Riemannian Geometry, Birkhäuser, Basel, 1992.
- [M] J. Milnor, Morse *Theory,* Princeton University Press, 1963.